

AFRL-IF-RS-TR-2006-319
Final Technical Report
November 2006

INFOSPHERE CONCEPT EXPLORATION AND
DEVELOPMENT (ICED)

ITT Industries, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2006-319 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

GENNADY R. STASKEVICH JAMES W. CUSACK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOV 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

FA8750-05-C-0271

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

INFOSPHERE CONCEPT EXPLORATION AND DEVELOPMENT (ICED)

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
ICED

5e. TASK NUMBER
05

6. AUTHOR(S)

Michael Maciolek

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ITT Corporation
2560 Huntington Ave
Alexandria VA 22303-1404

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFSE
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-319

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 06-743

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Infosphere Concept Exploration and Development (ICED) project, conducted by ITT Corporation under contract to AFRL
Information Directorate, provides concepts, methods, and a prototype software system presenting a Community of Interest (COI)
infosphere with a consistent vocabulary definition capability. As information management systems become more widely used by
COI, capabilities are increasingly needed to easily configure such systems to reflect COI needs and vocabularies, instead of those of
a single predefined organization. High operation tempos demand equally responsive information systems that can be composed,
dissolved and reconfigured to match the changing nature of the information Battlespace.

15. SUBJECT TERMS

Community of Interest, Dynamic, Infosphere, Net Centric, Operations Ready, Publish, Subscribe

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Gennady Staskevich

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

51
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

Table Of Contents

EXECUTIVE SUMMARY .. 4
1.0 INTRODUCTION .. 6

1.1 BACKGROUND .. 6
1.2 PURPOSE... 7
1.3 SCOPE ... 8
1.4 SYNOPSIS OF REPORT ORGANIZATION .. 8

2.0 METHODS, ASSUMPTIONS, AND PROCEDURES .. 10
2.1 DEVELOP METHOD FOR DEFINING A VOCABULARY ... 10

2.1.1 Create terminology .. 10
2.1.2. Adopt base set of Data Types .. 10
2.1.3 Develop a method for creating a COI-specific vocabulary.. 11

2.2 DEVELOP A PROCESS FOR DEFINING INFORMATION OBJECT TYPE SCHEMAS 11
2.3 DEVELOP TYPE MANAGEMENT SYSTEM... 11

2.3.1 TMS Storage... 12
2.3.2 Web Services Development .. 12
2.3.3 GUI Development .. 13

2.4 DEMONSTRATE THE TMS ... 14
2.5 PROJECT MANAGEMENT ... 14

3.0 RESULTS AND DISCUSSION... 16
3.1 TYPE MANAGEMENT SYSTEM... 16

3.1.1 Type Management System Overview and Vocabulary ... 16
3.1.1.1 Data Type.. 17
3.1.1.2 Element ... 17
3.1.1.3 Fragment ... 18
3.1.1.4 Model .. 19
3.1.1.5 Schema.. 20

3.1.2 Type Management System Storage... 20
3.1.3 Graphical User Interface to Type Management System... 21

3.1.3.1 GUI Software .. 22
3.1.3.2 GUI Deployment... 23
3.1.3.3 GUI Execution .. 23

3.1.4 Web Services Interface to Type Management System .. 24
3.1.4.1 TMS Web Service Software.. 25
3.1.4.2 TMS Web Services Server-Side Deployment and Execution.. 26
3.1.4.3 Client Deployment .. 27
3.1.4.4 Client Execution.. 27

3.2 SCHEMA DEFINITION AND MAINTENANCE PROCESS... 28
3.3 SCENARIO AND DEMONSTRATION... 32

3.3.1 Demonstration Scenario .. 32
3.3.2 Demonstration Deployment ... 34
3.3.3 Demonstration Steps .. 34

3.3.3.1 Browse Initial TMS Configuration.. 34
3.3.3.2 Create COT event Model... 36
3.3.3.3 Reuse detail Fragment as event Child ... 36
3.3.3.4 Create COT point Fragment .. 36
3.3.3.5 Append point Fragment to event Children... 36
3.3.3.6 Edit event To Ensure Children Are Unordered.. 36
3.3.3.7 Define version Property For event Model ... 37
3.3.3.8 Define lat Property For point Fragment .. 37
3.3.3.9 Restore Complete COT event Model And Browse Properties... 38
3.3.3.10 Generate XSD ... 38

ii

3.3.3.11 Demonstrate Web Services Schema Browsing.. 39
4.0 CONCLUSIONS... 41

4.1 ACHIEVEMENTS .. 41
4.2 DIRECTIONS FOR FUTURE RESEARCH ... 41
4.2.1 EXPANSION OF THE SUBSET OF XSD FEATURES IMPLEMENTED IN THE TMS 42
4.2.2 ADDITIONAL TMS GUI CAPABILITIES... 42
4.2.3 ADDITIONAL TMS WEB SERVICES CAPABILITIES.. 42
4.2.4 ADDITIONAL TMS CAPABILITIES .. 42
4.2.5 EXPANSION OF USEFULNESS.. 43

5.0 REFERENCES ... 44
APPENDIX A. ACRONYMS .. 45
APPENDIX B: ANALYSIS OF TMS EXTENSIONS TO SUPPORT OWL.. 46
APPENDIX C: ICED SOFTWARE CATALOG .. 49

TABLES

Table 2-1: ICED Meetings...14
Table 3-1: Java Source for the TMS GUI..22
Table 3-2: Organization Of Java Source Code In TMS Web Services..............................26

FIGURES

Figure 3-1: Data Types Contrasted With Elements ...18
Figure 3-2: A Fragment with Elements as Children ..18
Figure 3-3: A Model for Cursor On Target ...20
Figure 3-4: tms.properties File Specifies TMS Storage Locations....................................23
Figure 3-5: ICED View Launched As An Eclipse Plugin ...24
Figure 3-6: TMS Help Accessible Through GUI ..25
Figure 3-8: The TMS WSDL Returned From Server ..28
Figure 3-9: The TMS Web Services Client ...29
Figure 3-10: Schema Processes ...30
Figure 3-11: Top-Down and Bottom-Up Schema Development Processes31
Figure 3-12: Initial Model, Fragments, and Element In Demonstration............................33
Figure 3-13: COI Is Configured In Scenario ...33
Figure 3-14: Browsing Fragments in the Earth Location Model.......................................35
Figure 3-15: event Model has point and detail Fragments As Unordered Children..........37
Figure 3-16: Defining a Property for point Fragment..38
Figure 3-17: Properties For point Fragment ..39
Figure 3-18: XSD for COT Returned By TMS Web Services Client................................40
Figure B-1: An Example Model For The TMS ...47
Figure B-2: A TMS Model Interpreted As An Ontology ..47
Figure B-3: Jena 2.4 Code Framework Creating An Example OWL Model.....................48

iii

Executive Summary
The Infosphere Concept Exploration and Development (ICED) project, conducted by ITT
Corporation under contract to the Air Force Research Laboratory Information Directorate
(AFRL/IF), provides concepts, methods, and a prototype software system presenting a
Community Of Interest (COI) infosphere with a consistent vocabulary definition
capability. As information management systems become more widely used by COI,
capabilities are increasingly needed to easily configure such systems to reflect COI needs
and vocabularies, instead of those of a single predefined organization. High operation
tempos demand equally responsive information systems that can be composed, dissolved
and reconfigured to match the changing nature of the information battlespace.

The result of this effort is a proof-of-concept technology enabling and supporting the
instantiation, integration, and operation of information management tools within and
across COIs. Results include:

• A prototype Type Management System (TMS) to support a COI information
engineer in defining XSDs for use in COI information management

• An iterative and hierarchical schema development process supported by the TMS
• A scenario and a demonstration of the TMS operating under that scenario
• Directions identified for future research for the development of the TMS and the

schema processes supported by the TMS.

Schemas developed and maintained with the TMS are represented in a hierarchy with
four levels. Base Data Types, function as (non-user managed) atomic primitives.
Elements combine a base Data Type and a description of each Element’s meaning.
Fragments represent discrete sets of COI information in terms of combinations of
Elements and sub-Fragments. Fragments and Elements are combined into models; each
Model can generate an XML Schema Definition (XSD). XSDs can be used to configure
information management tools. The capability to define reusable Models, Fragments, and
Elements allows the TMS user to specify information objects and their components
processed within and between COIs.

The TMS provides two interfaces to users. The Graphical User Interface (GUI) to the
TMS, an Eclipse plugin, supports the creation and management of Elements, Fragments,
and Models. The GUI provides a concise visual display of the construction of schemas.
The Web Services interface to TMS provides an automated capability to fetch XSDs
created by the TMS. ITT envisions that other information management tools will use the
Web Services in machine-to-machine interactions.

An overall goal of the project was to demonstrate the feasibility of a functional, capable
tool supporting COI information engineers and abstracting computer science, XML, and
XSD knowledge from the user, thereby enabling COI information engineers to focus on
application area issues. ITT found that this goal can be attained if the tool functionality is
limited, but, as capabilities are added to the tool, the user is increasingly likely to be
required to know specific aspects of XML, XSD, and computer science.

iv

The TMS and its demonstration show that COI information engineers configuring and
reconfiguring information management tools can benefit from automated software tool
support. The prototype support provided by the TMS can be improved by future research
in expansion of TMS support to additional features of the XSD language, additional
capabilities to the TMS GUI, additional capabilities of the TMS Web Services, additional
TMS capabilities particularly in TMS data storage, and expansion of TMS usefulness in
process support and in the environment in which the TMS operates. This report provides
suggestions of future research directions in each of these five areas.

1

1.0 Introduction
This document is the final report for the Infosphere Concept Exploration and
Development (ICED), a research project conducted by ITT Corporation, Advanced
Engineering and Sciences Division, under contract to the Air Force Research Laboratory,
Information Directorate (AFRL/IF).

1.1 Background
The Air Force Research Laboratory, Information Directorate (AFRL/IF) investigates,
develops, maintains, and enhances Operational Information Management (OIM)
capabilities. OIM is a Net-Centric information management program. Information
Management concepts are being implemented in various software architectures and
systems that provide supporting infrastructure. The DoD Metadata Registry (DDMR),
Information Management Core Services (IMCS), and Net-Centric Enterprise Services
(NCES) are examples of such Information Management infrastructure, of which the IMC
Services is implemented under the OIM program. AFRL/IFSE continues to explore tools,
concepts, and processes supporting the creation and management of stable and consistent
infospaces for Communities of Interest (COIs).

A Community Of Interest (COI) is a group of users who collaborate on a set of tasks. The
members of a COI may come from multiple organizations. For example, a COI with a
military application might include members from multiple services or personnel from
defense organizations under multiple governments. A COI needs a shared vocabulary to
describe and share information among COI members and with other organizations. As
Information Management systems become more widely used by COIs, capabilities are
being increasingly demanded to easily configure such systems to reflect COI needs and
vocabulary, instead of those of a single predefined organization.

The IMCS Metadata Schema Repository and Information Object Repository provides a
capability in which XML Schema Descriptions (XSDs) are used to define information
objects. The development of an XSD, however, requires fairly sophisticated technical
abilities. Furthermore, it is difficult to browse XSDs and easily compare and contrast how
different information objects are defined. Capabilities are needed to provide personnel
that have specialized application knowledge, but less advanced computer science
technical knowledge, methods and processes for configuring Information Management
systems to satisfy COI needs.

Analysts designing information objects for a COI, and their associated schemas, draw on
either an informal or formal representation of the domain from which information objects
can come. This representation may include some notion of the individuals comprising the
domain of discourses, the classes or sets into which these individuals fall, attributes that
can describe individuals, and relations between individuals, classes, etc. In other words,
the development of schemas for a COI falls within the discipline of ontological
engineering. An ontology:

2

“is a hierarchically structured set of terms for describing a domain that can
be used as a skeletal foundation for a knowledge base.” (Swartout et al.
1997, as quoted in Gomez-Perez et al. 2004)

“An ontology may take a variety of forms, but it will necessarily include a
vocabulary of terms and some specification of their meaning. This
includes definitions and an indication of how concepts are inter-related
which collectively impose a structure on the domain and constrain the
possible interpretations of terms.” (Uschold and Jasper 1999, as quoted in
Gomez-Perez et al. 2004)

Researchers in Knowledge Engineering, Artificial Intelligence, and Computer Science
increasingly find it useful to explicitly represent ontologies in a formal language.1 For
example, the Web Ontology Language (OWL, see http://www.w3.org/TR/owl-features/)
is an extension of XML to support the specification of ontologies. Furthermore,
researchers in these fields have developed methods, methodologies, and tools for
constructing, merging, evaluating, and otherwise managing ontologies. For example,
Protégé (http://protege.stanford.edu/) “is a free, open source ontology editor and
knowledge-base framework”. As another example, Jena (http://jena.sourceforge.net/
ontology/) provides a Java-based Application Programming Interface (API) supporting
the development of applications within the semantic web.

The OIM program has identified a need to provide ontological engineering capabilities to
analysts setting up Information Management capabilities for a COI. Such analysts may be
presumed to have a general technical background, but cannot be assumed to have
completed training in XML, XSD, or tools and languages supporting ontological
engineering. The research described in this report fills this need by demonstrating a
software system and processes to provide these capabilities.

1.2 Purpose
The work described in this report provides concepts, methods, and a prototype software
system presenting a COI infosphere with a consistent vocabulary definition capability.
An overall goal of the project was to demonstrate the possibility of a functional, capable
tool supporting COI information engineers and abstracting computer science, XML, and
XSD knowledge from the user. ITT wanted to develop a user-friendly tool for COI staff
without an XML expert available. Specifically, this effort:

• Developed a method for defining a COI’s vocabulary using primitive terms:
o The software system provides a Type Management System (TMS) in which

base Data Types function as (non-user managed) atomic primitives

1 Quine (1953) is an early case in philosophy of analyzing formal languages to clarify ontological
commitments. Quine’s slogan, “To be is to be the value of a bound variable” concisely states that the sets
of objects which quantified variables can range over in statements of the predicate calculus, such as

)(, xpx∀ , constitute those individuals whose existence is postulated by an analysis of statements.

3

o The software system supports a process for creating a COI-specific
vocabulary of Elements in the TMS, where an Element combines a base Data
Type and a description of the Element’s meaning

o The software system, associated documentation, and associate processes
provides capabilities to manage the COI-specific vocabulary

• Developed a process for defining schemas using the COI’s defined vocabulary
o The software system supports representing discrete sets of COI information in

terms of combinations of primitive terms; these combinations are the
Fragments in the TMS

o The software system supports combining Fragments and Elements into
Models, which in turn can be used to generate XML Schema Definitions
(XSDs). These XSDs are compatible with the IMCS, as well as with other
systems.

• Developed a software system enabling clients to define COI vocabulary and to
construct XSDs in accordance with the COI’s ontological requirements
o The Graphical User Interface (GUI) to the TMS, an Eclipse plugin, supports

the creation and management of the primitive Elements in a COI-specific
vocabulary

o The GUI allows for the visual display of the construction of schemas through
the creation and management of Fragments and Models, comprised of
Elements and Fragments

o The Web Service (WS) interface to the software system provides the TMS
with a capability to fetch XSDs generated by the COI, which can then be used
in other systems, such as the IMCS Metadata Schema Repository (MSR)

• Demonstrated the newly developed capabilities for this effort, as encapsulated in
the TMS

o The demonstration, as exhibited at the effort’s final presentation and
described in Section 3.3 of this report, is defined in the context of an
operationally realistic scenario

o The setup, initialization, and execution of the demonstration are
documented in this report.

1.3 Scope
As part of a grander vision of composable Infospaces, the scope of this effort is to design
and develop methods, processes and software that provide a consistent vocabulary
management capability to COI members and administrators.

1.4 Synopsis of Report Organization
The remainder of this report is subdivided into two main sections and followed by a
conclusion.

Section 2, titled “Methods, Assumptions, and Procedures”, describes the tasks conducted
under this effort to achieve ITT’s research results. Section 2 describes the development of
methods for defining a COI-specific vocabulary, of processes for defining schemas, of

4

software to provide automated support for these methods and processes, and of a
demonstration of that tool. Section 2 also briefly describes the management of the ICED
project.

Section 3, title “Results and Discussion”, describes the research results achieved under
this effort. Results fall into three main categories:

• The Type Management System (TMS)
• The specification of schema development processes supported by the TMS
• The definition of a scenario with which the TMS is demonstrated

Section 3 describes results in each of these areas. As part of the description of the TMS,
instructions are provided for deploying and executing the software.

The conclusion section summarizes the accomplishments of this effort and directions for
future research.

5

2.0 Methods, Assumptions, and Procedures
The methods and procedures ITT adopted under the ICED project fall into four tasks:

• Develop a method for defining a vocabulary for a Community Of Interest (COI)
• Develop a process for defining schemas for information objects
• Develop the Type Management System (TMS)
• Develop a demonstration of the TMS

This section describes the activities conducted under each one of these tasks. This section
also briefly overviews aspects of ICED project management.

2.1 Develop Method for Defining a Vocabulary
ITT investigated how a vocabulary for a COI would be used. In the context of
information management, the terms in a COI vocabulary are the names of information
objects and parts of information objects. In particular, a vocabulary would be used to
describe information objects in terms of metadata schemas. Schemas and parts of
schemas support searches (Harlow 2005) and the population of Metadata Registries
(ISO/IEC 2004), such as the DoD Metadata Registry (DDMR), and of the Metadata
Schema Repository (MSR) associated with the Information Management Core Services
(IMCS).

2.1.1 Create terminology
Under the ICED project, a hierarchical structure was created in which the vocabulary for
a COI can be formalized. Terminology was invented to describe terms on each level of
this hierarchy:

• Data Types, originally called “Atomic Primitives”, are the lowest level in the
hierarchy and are predefined

• Elements, originally called “Complex Primitives”, are basic building blocks of a
COI vocabulary

• Fragments are composed of Elements and other Fragments.
• Models, originally called “Schemas”, are the highest level of the hierarchy, are

composed of Elements and Fragments, and are used to generate XML Schema
Definitions (XSDs).

2.1.2. Adopt base set of Data Types
The base set of Data Types were selected from the data types defined in XSD. These
types were selected to illustrate how more complex notions can be built on top of this
base in defining a COI vocabulary.

6

2.1.3 Develop a method for creating a COI-specific vocabulary
Once the hierarchy of terms was defined, one can explore how a COI vocabulary can be
created and structured in this hierarchy. In particular, the use of subfragments, as children
of Fragments, allows any level of depth to be supported by this hierarchical method. Tool
support is easier to provide if the hierarchical method is confined to producing a Directed
Acyclic Graph (DAG), and that constraint was imposed on the prototype produced under
this project.

Section 3.1.1 provides further details about Data Types, Elements, Fragments, and
Models.

2.2 Develop a Process for Defining Information Object Type
Schemas
In specifying a process for defining schemas, ITT researchers drew on the literature in
ontological engineering and in software engineering lifecycle models. Gomez-Perez et al.
(2004) discusses how ontology development processes fit into a larger set of processes,
including management and support processes. The schema processes were defined in an
analogous context. Furthermore, schema development was conceptualized as a set of
iterative processes. Iterative or spiral lifecycle processes have been used in software
engineering for some time (Boehm 1988). Top-down and bottom-up processes are well-
established metaphors in software engineering, and these metaphors were drawn on for
further specifying schema development processes. Schema processes, including schema
development processes, are more fully defined in Section 3.2

2.3 Develop Type Management System
ITT developed a software system, the Type Management System (TMS), under the ICED
project. ITT met with AFRL during the ICED kickoff meeting to clarify the role and
purpose of the TMS. This clarification, and the definition of terms and individual pieces
of the TMS, solidified the concepts and high-level architecture of the TMS.

In particular, ITT and AFRL agreed that the TMS is a repository for Elements,
Fragments, and Models that represent information relevant to Communities of Interest
(COI). The TMS has a Graphical User Interface (GUI) that allows users to create,
modify, and delete that information. The TMS presents appropriate services to the
community via a Web Service layer. With this capability, the TMS could serve as the
Metadata Schema Repository in a Net-Centric Information Management System, such as
Information Management Core Services (IMCS) implementations. ITT and AFRL also
agreed that a secondary goal of the TMS is to provide enough ontological support so that
users can convey the meaning of their COI’s information.

ITT investigated the Web Ontology Language (OWL), Protégé, and Jena, which are
technologies that can be leveraged in developing ontology tools. Both Protégé and Jena
can be used inside Eclipse. ITT installed and experimented with both using simple

7

models. Since TMS storage was designed as XML flat files, use of Protégé and Jena
would be overkill for the ICED project. These advanced technologies may be used in
future work adding advanced ontology capabilities to the TMS. For example, Jena could
be used with the TMS model if capabilities to manipulate OWL schemas are desired.

This experimentation helped establish that the TMS development would focus on initial
storage capabilities, a Web Services interface, and a GUI.

2.3.1 TMS Storage
The TMS allows the user to define Elements, Fragments, and Models. The TMS
generates XSD files. The Elements, Fragments, and Models must be stored in an
intermediate form to support user definitions and management. ITT researched repository
solutions and implemented a prototype TMS storage solution.

For example, ITT looked at the Berkeley XML Database (XMLDB). After research on
the stability and maturity of XMLDB, ITT decided that this project would not benefit
from implementing a solution based on an XMLDB. ITT also looked at using Jena as the
database interface to a MySQL Database.

ITT decided that, for initial capabilities produced under this project, TMS storage would
use simple file system storage mechanisms. ITT did not implement a solution using a full
relational or XML database. This decision sped up development and allowed ITT to focus
on prototype functionality instead of working on underlying database infrastructure. The
TMS storage capabilities are further described in Section 3.1.2.

2.3.2 Web Services Development
Under the direction of AFRL, the development of the TMS was decoupled from IMCS
dependencies. The TMS provides a capability for information management tools (IMCS,
NCES Discovery Services, etc.) supporting COIs to retrieve XML schemas created with
the TMS. That is, the Web Services interface to the TMS provides Web Services to
access schemas generated by the TMS.

ITT began Web Services development by implementing skeletal Web Services. ITT
expanded and refined these over the course of the project. ITT explored some Web
Services capabilities that could be implemented in further work. For example, ITT
researched:

• The use of Simple API for XML (SAX) and Document Object Model (DOM)
libraries and constructed preliminary methods to provide a capability to search the
contents of XSD files

• The construction of a demonstration client for a Web-based front end to TMS,
providing schema-based searching on either a Java console application or as a
Web application using the same Web Services. This research included
experimentation with Ruby on Rails.

8

At the completion of the project, the TMS Web Services provided capabilities to:

• Retrieve XSDs by name
• Retrieve a list of XSDs in a specified directory
• Search for names of XSDs based on a partial name

The TMS Web Services are more fully described in Section 3.1.4.

2.3.3 GUI Development
At the ICED kickoff meeting, ITT described plans to implement the TMS GUI in the
Eclipse framework. In keeping with these plans, ITT programmers explored the Standard
Widget Toolkit (SWT) - which is a Java-based GUI development framework used in
Eclipse, Eclipse application development, and the Eclipse plug-in architecture. The TMS
GUI displays Elements, Fragments, and Models. (Originally, “Models” were called
“Schemas”.) Properties, corresponding to XSD “Attributes”, can be added to Fragments
and Models. ITT used the GUI development as the driver for defining the underlying
logic for maintaining Elements, Fragments, and Models.

In February 2006, ITT conducted a Technical Interchange Meeting (TIM) with AFRL in
which various project decisions were discussed and debated. It was at this meeting that
the distinction between Fragments and Models was introduced into the TMS design.
Another topic of discussion was how changes made in the GUI would affect existing
XSDs. That is, matching XSDs would be updated when an Element, Fragment, or Model
is changed through the GUI.

The development of the TMS GUI continued to progress after the TIM. Capabilities
added to the GUI include:

• The generation of XSD from a Model and the saving of the XSD to a file
• The updating of any matching XSD when an Element, Fragment, or Model is

changed
• Some drag-and-drop functionality – dragging an Element to a Fragment or Model,

dragging a Fragment under another Fragment, and dragging a Fragment to a
Model now all modify the hierarchy of user-defined Elements, Fragments, and
Models appropriately

• A “View XSD” feature
• The listing of the Fragments and Models in which a user-specified Element is

used
• The sorting of Elements
• The addition of Properties to Fragments and Models
• A robust “Help” feature, including the addition of many Help topics
• The capture of the time and user when Elements, Fragments, or Models are

updated

• Finer-grained logging to record user modifications

Developing the TMS GUI included many details necessary to produce a working system.
For example, the code constrains the decomposition of Fragments to be a loop-free tree,
thereby avoiding infinite loops in the code. Some effort was expended towards the end of
the project in researching how to deploy the GUI as an Eclipse plugin. The code was
documented and Javadocs were generated for all TMS classes. ITT conducted much
informal testing throughout the development process. A number of known schemas were
generated with the tool as part of the testing. The TMS GUI is more fully described in
Section 3.1.3.

2.4 Demonstrate the TMS
The TMS is a proof-of-concept system intended to show the utility of providing COI
information engineers with capabilities to model the structure of COI information objects
and to generate schemas. As such, developing a demonstration of the use of the TMS was
an important part of the ICED project.

ITT presented two demonstrations of the TMS during this project. The first was a
presentation at the Operational Information Management (OIM) Principal Investigator
(PI) meeting in April 2006. The TMS software was deployed for this presentation to run
off a flash drive. The focus of this demonstration was to illustrate some capabilities of the
TMS, as it stood at that stage of the project.

ITT demonstrated the TMS as part of the ICED final presentation in September 2006.
This demonstration was presented in the context of a user-oriented scenario, in which a
COI information engineer uses the TMS to create a Cursor-On-Target (COT) XSD file to
configure COI information management tools. As such, the scenario and demonstration
provide a context in which schema processes can be discussed. The demonstration
scenario and TMS demonstration is more fully described in Section 3.3.

2.5 Project Management
Project management activities performed by ITT during this task included status
reporting and meetings with AFRL/IF. Table 2-1 lists major meetings with AFRL/IF
participation.

Table 2-1: ICED Meetings
Review Date

Kickoff Meeting 17 October 2005
Technical Interchange Meeting (TIM) 3 February 2006

Presentation at OIM PI Meeting 11-12 April 2006
Status Review Meeting 23 May 2006
Status Review Meeting 15 June 2006

Final Presentation 15 September 2006

9

At the kickoff meeting, ITT assisted in defining the requirements for the TMS. A
discussion of current research on ontologies and AFRL/IF feedback on the tasks in the
Statement of Work (SOW) helped clarify the scope of the ICED project. ITT and
AFRL/IF agreed that basic terms of the TMS include “Data Type”, “Element”, and
“Fragment”.

ITT prepared and presented slides at the February TIM. ITT discussed project progress
and reported no obstacles to progress existed in the ICED project.

ITT personnel participated in the OIM PI meeting held April 11-12 in Washington, DC.
ITT presented a poster session, a demonstration, and a slide show.

ITT met with AFRL/IF on 23 May to discuss the tasks to be completed before the end of
the contract. ITT and AFRL/IF agreed that they would hold another meeting to discuss
the priority of enhancements extending the ICED scope if the tasks identified in the SOW
were completed without depleting the funding.

This additional meeting was held on 15 June. ITT and AFRL/IF discussed the project
tasks as outlined in the statement of work. For those tasks that were incomplete, ITT and
AFRL/IF agreed on a path to completion.

At the final presentation, ITT presented the results of this effort. Results included a
description of the benefits of using the TMS, of directions for future research, of schema
definition processes, and of the scenario for the demonstration. The TMS was
demonstrated at the final presentation.

10

3.0 Results and Discussion
Under the ICED project, ITT:

• Produced a prototype Type Management System (TMS) to support a Community
Of Interest (COI) information engineer defining information objects to be used in
COI information management

• Identified schema processed and defined schema development processes
supported by the TMS

• Defined a scenario and produced a demonstration of the TMS operating under that
scenario.

Each one of these results is discussed in a subsection of this section.

3.1 Type Management System
The Type Management System (TMS) is comprised of three major subsystems:

• XML files for storing Elements, Fragments, Models, and Schemas manipulated
by the TMS

• A Graphical User Interface (GUI), deployed as an Eclipse plugin
• TMS Web Services for accessing and retrieving XML Schemas created by the

TMS.

After an overview of the TMS, each major subsystem is described in a subsection of this
section.

3.1.1 Type Management System Overview and Vocabulary
The TMS is designed to support a user defining, modifying, or configuring schemas for
Information Management tools. These Information Management tools are assumed to be
capable of providing infrastructure for a Community Of Interest (COI). The TMS
provides capabilities for describing information objects that flow between and within
such COI tools. In effect, the TMS allows the user to build and maintain a vocabulary for
a COI, where the words in the vocabulary can range over the names of these information
objects and of parts of these objects.

The TMS GUI provides a user with a capability to create and browse a compact
description of potentially complex XML Schema Definitions (XSDs). Files containing
XSDs can be generated from Models in the TMS, while Fragments and Elements provide
reusable components of Models. These XSD files, in turn, can be used to configure
Information Management tools, such as IMCS and NCES servers and clients.

11

The TMS user is assumed to be a COI information user. The user is assumed to have
domain knowledge, where the domain would vary with the specific COI and the
applications supported within that COI. For example, in the scenario developed under this
project to demonstrate TMS capabilities, the user is assumed to have some knowledge of
tactical military applications. The backend of the TMS draws heavily on XML and XSD
standards and technology. The TMS user, however, need not understand either XML or
XSD syntax. The TMS user is assumed to have some introductory computer science
knowledge. Specifically, the user is assumed to be aware that variables are typed; to
recognize type names, such as float and integer; and to be able to decide what types are
appropriate for Elements and Properties the user defines within the TMS.

The Type Management System (TMS) is organized around a hierarchy of user-defined
Elements, Fragments, and Models. Elements are defined in terms of given Data Types,
and XML Schema Definitions (XSDs) are generated from Models. This overview of the
TMS explains what Data Types, Elements, Fragments, Models, and Schemas are.

3.1.1.1 Data Type
A Data Type, in the TMS, is a low-level basic component of a COI vocabulary. Data
Types have no semantics associated with them, other than some general mathematical
and calendar knowledge. The TMS currently has the following Data Types defined:
string, integer, nonNegativeInteger, positiveInteger, decimal, float, date, time, dateTime.
These are a subset of Data Types defined in standard XSD. Data Types are used by TMS
users creating Elements and assigning Properties to Fragments or Models, but are not
explicitly managed by TMS users.

3.1.1.2 Element
An Element is a higher-level object than a Data Type. Elements are the basic building
blocks of the TMS, representing the smallest or atomic unit of information managed by
the TMS user. An Element consists of a Name, Data Type, and Description. These three
fields are required. The TMS also contains information on when and by whom each
Element was created and last modified. With the mandatory fields in an Element,
Elements describe a data item with semantic information not present in Data Types
(Figure 3-1).

An Element’s Name must be unique across the TMS. No other Element, Fragment, or
Model can have the same Name. Names should be chosen to be meaningful to others
within the COI. The Element’s Description should explain the Element’s purpose and use
in enough detail to be understandable to others in the COI. The reuse of Elements,
Fragments, and Models is a goal of the TMS, and the Description of an Element should
support such reuse.

12

3.1.1.3 Fragment
Fragments are snippets of the COI-specific language that is being defined. Fragments are
composed of Elements and other Fragments. Fragments differ from Models in that
Fragments are incomplete, whereas Models are a finished product. Models can be used to
generate XML Schemas, but Fragments cannot.

Figure 3-1: Data Types Contrasted With Elements

Figure 3-2: A Fragment with Elements as Children

13

A Fragment consists of a Name, Description, Properties, Child Grouping, and Children.
Name and Description are mandatory fields, and the TMS assigns a default Child
Grouping to each Fragment. A Child can be an Element or another Fragment. Properties
and Children are optional; a Fragment can have zero Children and no Properties. When a
Fragment has more than one Child, some of those Children can be Elements and some
can be Subfragments. No restriction is imposed that all Children must be either Elements
or Subfragments; Children can be mixed.

The Fragment’s Name must be unique across the TMS. No Element, other Fragment, or
Model can have the same Name. As with Elements, Names and Descriptions should be
defined to be meaningful and to support reuse.

Additional information about the Fragment can be added as a Fragment Property.
Properties, unlike Elements, are not reusable in other Fragments. A Fragment Property
corresponds to an attribute in XML.

Fragments and Subfragments can only form loop-free trees in the TMS. In other words, a
Fragment cannot be a Child of itself, and A Fragment cannot be simultaneously a
descendant of another Fragment and also an ancestor of that Fragment.

The Child Grouping determines the order and number of occurrences of the Children. If
there are no Children, the Grouping is ignored. Three Child Grouping choices exist:

• Required to be in the sequence shown: each Child can appear any number of
times, but they must be in the order in which they appear in the TMS GUI

• Unordered (but Children can appear at most one time): Any of the Children can
be omitted. Each Child that is used can appear at most once. The Children that
appear can be in any order.

• Mutually exclusive (only one Child can appear): Only one can appear, but that
type of Child can appear any number of times.

These Child Grouping options correspond to the three varieties of model groups in XML
Schema Definitions: sequence, conjunction (“all”), and disjunction (“choice”). In the
XSD specification, “sequence”, “all”, and “choice” are the three kinds of compositors.

3.1.1.4 Model
An information model is a pattern describing an information object. The model defines
the information object’s parts, properties, and the relationships between the different
parts. A TMS Model consists of a Name, Description, Properties, Child Grouping, and
Children. Name and Descriptions are mandatory fields, and the TMS assigns a default
Child Grouping to each Model. A Child can be an Element or a Fragment. Properties and
Children are optional; a Model can have zero Children and no Properties. When a Model
has more than one Child, some of those Children can be Elements and some can be
Fragments. No restriction is imposed that all Children must be either Elements or
Fragments; Children can be mixed.

14

Other characteristics of a Model also parallel the characteristics of a Fragment. The
Model’s Name must be unique across the TMS. No Element, Fragment, or other Model
can have the same Name. As with Elements and Fragments, Names and Descriptions
should be defined to be meaningful and to support reuse. Additional information about
the Model can be added as a Model Property. Properties, unlike Elements and Fragments,
are not reusable in other Models. The Child Grouping of a Model has the same options
and meaning as the Child Grouping for a Fragment.

Figure 3-3: A Model for Cursor On Target

3.1.1.5 Schema
An XML Schema Definition (XSD) can be generated and saved from each Model. The
XSD is written to a file with the name modelName.xsd where modelName is the unique
Name of the Model. Generated schemas can be accessed via function calls in the TMS
Web Service layer.

3.1.2 Type Management System Storage
The TMS stores Elements, Fragments, Models, and Schemas in files. In addition, log files
include messages about modifications made with the Graphical User Interface (GUI) to
TMS data. The locations of these files are specified in a “properties” file deployed with
the GUI. The TMS Web Services deployment specifies the directory containing the XML
Schema Definition (XSD) files generated by the TMS.

Information on Elements, Fragments, and Models is stored in XML files. The formats of
files for Elements, Fragments, and Models are described in the GUI on-line help system.
As described in the on-line help, each XSD file contains a valid XML Schema definition.
A Schema can be generated for each Model, and these Schemas can be used with other
information management applications.

15

The simplicity of the TMS storage system reflects a design decision to concentrate on
novel capabilities. The TMS does not currently include versioning, but some protections
are built into the GUI for the user to recover Elements, Fragments, and Models from
undesired changes. When modifications are made using the GUI, the changes are made
for the current session only until the changes are saved. If changes have been made since
the last save that the user would like to undo, exiting the GUI without saving will leave
Elements, Fragments, and Models as defined in the last save.

The Elements, Fragments, Models, and XSDs are stored in specific directories as
identified in the properties file deployed with the GUI. All Elements are stored in one
file. Each Fragment, Model, and XSD is stored in a separate named file. Therefore, one
can make a backup copy of the TMS data before saving changes. Using the file system to
backup and restore TMS files is not without risk. If a restored file is out of sync with
other files, the item will not be loaded when the TMS GUI is next launched. For example,
suppose some Elements are deleted and a Fragment is changed in a TMS GUI session to
no longer refer to the deleted Elements. If a copy of the Fragment file is restored to the
state prior to the change, an inconsistency will arise. Since the Elements file was not
saved and restored with the Fragment, Elements in the restored Fragment no longer exist,
and, therefore the Fragment cannot be loaded.

These sort of inconsistencies cannot arise with XSDs. XSD files are complete, valid,
well-formed XML schemas. Before generating and saving an XSD file for a modified
Model, you may want to consider renaming the last previously-generated XSD file for
that Model. When the user employs the TMS GUI to generate and save an XSD file for a
Model, the GUI checks to see if an XSD file already exists for that Model. If an XSD file
exists, a message is displayed asking the user if the existing XSD file should be copied
over. The XSD file can be renamed, by using the file system outside the TMS GUI, at
this point.

3.1.3 Graphical User Interface to Type Management System
The TMS includes a Graphical User Interface (GUI). The GUI provides capabilities to
support a COI analyst in defining a COI vocabulary, in combining Elements of that
vocabulary, and ultimately in generating Schemas describing information objects needed
to support information management within and between COIs.

The TMS GUI is an Eclipse plugin and was developed under the Eclipse Integrated
Development Environment (IDE). According to their website http://www.eclipse.org,

“Eclipse is an open source community whose projects are focused on
providing an extensible development platform and application frameworks
for building software.”

One can purchase various books (for example, Burnette (2005) or Gallardo et al. (2003))
describing how to use Eclipse to develop software.

16

3.1.3.1 GUI Software
The TMS GUI software is distributed under this project in two zip files. One contains
source and development files. The other contains the binaries that are deployed as an
Eclipse plugin. The software and development files consist of:

• Various settings and configuration files that organize the software as an Eclipse
project

• bin: folder of compiled Java classes for the TMS GUI
• doc: folder containing Javadoc files for the TMS GUI
• html: folder containing html files to incorporate in Eclipse help for the TMS GUI
• icons: folder containing an icon for the TMS GUI
• META-INF: folder containing a manifest file
• src: Java source for the TMS GUI

The source code is organized as one Java package, consisting of the Java classes shown
in Table 3-1. The TMS GUI is compiled, and the ICED jar file is created, from within
Eclipse.

Table 3-1: Java Source for the TMS GUI
Pkg. Name Type Notes

AddToFragmentDialog class extends
org.eclipse.jface.dialogs.Dialog;

Attribute class
AttributeDialog class extends org.eclipse.jface.dialogs.Dialog
ChildElement class
ChildElementDialog class extends org.eclipse.jface.dialogs.Dialog
ChildFragment class
ChildFragmentDialog class extends org.eclipse.jface.dialogs.Dialog
Constants class
Element class implements java.lang.Comparable
ElementContentProvider class implements org.eclipse.jface.viewers.

IStructuredContentProvider
extends

org.xml.sax.helpers.DefaultHandler
ElementDialog class extends org.eclipse.jface.dialogs.Dialog
Fragment class
FragmentContentProvider class implements org.eclipse.jface.viewers.

ITreeContentProvider
FragmentDialog class extends org.eclipse.jface.dialogs.Dialog
FragmentXMLParser class extends

org.xml.sax.helpers.DefaultHandler
ICEDPlugin class extends org.eclipse.ui.plugin.

AbstractUIPlugin
ICEDView class extends org.eclipse.ui.part.ViewPart

iced

StringArrayTransfer class extends org.eclipse.swt.dnd.
ByteArrayTransfer

17

3.1.3.2 GUI Deployment
The GUI to TMS is deployed as an Eclipse plug-in. ITT has tested it under Eclipse
versions 3.1.0 and 3.2 on a Windows platform. It has also been run under Eclipse version
3.2 on under Mac OS X, version 10.4.5, although these instructions do not quite apply to
a Macintosh platform. To install the GUI, move the iced_1.0.0.jar file and the iced folder
to your eclipse\plugins directory. The deployment consists of the following files:

• eclipse\plugins\iced_1.0.0.jar
• eclipse\plugings\iced\tms.properties
• eclipse\plugings\iced\elements\elements.xml
• eclipse\plugings\iced\fragments\README.txt
• eclipse\plugings\iced\models\README.txt

One can delete the files named “README.txt”. These files are placeholders created to
ensure that the directories in which they reside are carried along in the deployment. The
GUI is deployed with a default “wildcard” Element and no Fragments, Models, or
Schemas. To deploy example Elements, Fragments, and Models, see the scenario and
demonstration described in Section 3.3. The user can redefine the location in which the
GUI stores TMS data by modifying the tms.properties file (Figure 3-4).

// Indicates a comment line

// The directories are relative to the directory from which Eclipse is running, unless
// the complete path is included

element.directory=plugins/iced/elements/
element.filename=elements.xml
fragment.directory=plugins/iced/fragments/
model.directory=plugins/iced/models/
xsd.directory=plugins/iced/XSDs/
log.directory=plugins/iced/logs/

Figure 3-4: tms.properties File Specifies TMS Storage Locations

3.1.3.3 GUI Execution
The GUI to the TMS is launched from within the Eclipse SDK. Eclipse asks the user to
specify a workspace when Eclipse is being started. Choose any workspace you like here;
this choice is irrelevant to the TMS GUI plugin. Eclipse presents a series of pull-down
menus (File, Edit, Navigate, Search, Project, Run, Window, Help) at the top of the
Eclipse window. Choose the Window menu, the “Show View” option on the pull down
menu that appears, and then “Other” on the final submenu. A pop-up window will then
appear, from which the user should choose “COI TMS” under the “COI TMS” folder.
The user may want to maximize the COI TMS view. Figure 3-5 illustrates the results of
these steps launching the TMS GUI.

18

Figure 3-5: ICED View Launched As An Eclipse Plugin

Once the TMS GUI has been launched, the user can create, modify, and save Elements,
Fragments, and Models, thereby defining a COI vocabulary. From Models, the user can
generate and save XSD files for describing COI information objects. The TMS GUI
includes an extensive on-line help system describing these operations. To launch TMS
GUI help, choose the Eclipse Help pull down menu and the “Help Contents” option on
that menu. Figure 3-6 illustrates Eclipse help, with the TMS help expanded on the left
panel.

3.1.4 Web Services Interface to Type Management System
The TMS includes a Web Services interface. The TMS Web Services perform simple
processes. These Web Services support an interaction between an open standard input
and the wide ranging functionality in the TMS. The open standard input is a Simple
Object Access Protocol (SOAP) message delivered over TCP/IP. The Web Services focus
on the retrieval and searching of Schemas generated by the TMS. The TMS Web
Services consist of:

• getSchema
• getSchemaList
• getSchemaListfromPartialName

19

Figure 3-6: TMS Help Accessible Through GUI

The getSchema Web Service contains only one parameter, the name of the Schema to be
obtained. The name (for example, Genes.xsd) references the Schema on the server side.
This Web Service returns the Schema to the Web Service Client.

The getSchemaList requires no parameters and simply returns a list of all of the Schemas
available for searching or retrieval.

The getSchemaListfromPartialName Web Service uses only a single string parameter,
representing a partial match of Schemas to for which to search. For example, the string
“GE” or “ge” returns all Schemas with names containing textual subsets which match.
This Web Service treats its parameter as case insensitive. The string “GE” could return
Schemas named “Genes.xsd” and “Page.xsd”. A Web Service client can use each Schema
name returned from getSchemaListfromPartialName as the parameter to the getSchema
Web Service.

3.1.4.1 TMS Web Service Software
The software implementing the TMS Web Services consists of two parts: software to
install on the Web Services server and Web Services client software. The TMS server
must have installed Apache Tomcat 5.x (http://tomcat.apache.org/), an open source
application server. Both the server and the client must have Java 1.5 installed. Various

20

open source libraries are automatically installed as part of the deployment process. Look
in TMS/WEB-INF/lib after the server-side Web Services is deployed, or in
TMSClient.jar in the client deployment to see these library packages.

The TMS Web Services software delivered under this project consist of three archives:

• TMS-WS.zip – Files to deploy under Tomcat on the TMS Web Services server
• Type Management System.zip – TMS Web Services source code and related

development files
• TMSClient.jar – Default TMS Web Services client.

The source code for the TMS Web Services is organized into two packages (Table 3-2).
The Java interface and classes in the package com.itt.tms.ws, along with an XML file,
WSDL file, jar files, etc., provide TMS Web Server capabilities to be deployed on a
server. The interfaces and classes in the package tms.client, along with jar files for certain
open source tools, provide a default TMS Web Services client. The TMS Web Services
development files include an Ant script. This Ant script automatically builds and deploys
the TMS Web Services. The script depends on application settings (JAVA_HOME,
CATALINA_HOME, etc.) defined at its initialization.

Table 3-2: Organization Of Java Source Code In TMS Web Services
Package Name Type Notes

ISchemaService interface extends java.rmi.Remote
SchemaNotFoundException class extends java.lang.Exception

com.itt.tms.ws

SchemaService class implements ISchemaService,
javax.xml.rpc.server.serviceLifecycle

ISchemaService interface extends java.rmi.Remote
ISchemaServicePortSoap\

BindingStub
class extends org.apache.axis.client.Stub,

implements ISchemaService
SchemaNotFoundException class extends org.apache.axis.AxisFault,

implements java.io.Serializable
SchemaService interface extends javax.xml.rpc.Service
SchemaServiceClient class extends javax.swing.JFrame

tms.client

SchemaServiceLocator class extends
org.apache.axis.client.Service,
implements SchemaService

3.1.4.2 TMS Web Services Server-Side Deployment and Execution
The TMS Web Services are deployed on the server by extracting the files in TMS-
WS.zip file. The files should be extracted into a folder, TMS, created in the extraction.
This file should be placed in the webapps directory of the server’s Tomcat application.
Tomcat must then be restarted, after which the Web Services will be deployed at the URL
of the server: http://localhost:8080/TMS/services/SchemaService. (The port may differ,
depending on the installation settings of Tomcat, but port 8080 is prevalent.) The files
deployed for the TMS Web Services consist of:

21

• apache-tomcat-5.5.12\webapps\TMS\index.html
• apache-tomcat-5.5.12\webapps\TMS\META-INF\MANIFEST.MF
• apache-tomcat-5.5.12\webapps\TMS\WEB-INF\classes\com\itt\tms\ws*.class

(three files)
• apache-tomcat-5.5.12\webapps\TMS\WEB-INF\classes\log4j.properties
• apache-tomcat-5.5.12\webapps\TMS\WEB-INF\classes\SchemaService.wsdl
• apache-tomcat-5.5.12\webapps\TMS\WEB-INF\lib*.jar (10 files)
• apache-tomcat-5.5.12\webapps\TMS\WEB-INF\server.config.wsdd
• apache-tomcat-5.5.12\webapps\TMS\WEB-INF\web.xml

The server configuration includes the definition of the directory in which TMS Schemas
are stored. A context parameter (Figure 3-7) is defined in the web.xml file deployed as
described above. To configure the TMS Web Services for your server, change the value
of the context parameter to match the location of the Schemas in your installation of the
TMS.

- <context-param>
 <param-name>XSDPath</param-name>
 <param-value>C:/XSDs/</param-value>
 </context-param>

Figure 3-7: Default Definition of Location of TMS Schemas

One can check that the TMS Web Services are available, once they have been deployed
and Tomcat has been restarted. Point your Web browser to the following URL:
http://localhost:8080/TMS/services/SchemaService?WSDL. If the TMS Web Services
have been correctly configured, the server should return the Web Services Definition
Language (WSDL) for the TMS Web Services, as shown in Figure 3-8.

3.1.4.3 Client Deployment
The TMS Web Services software includes a default Web Services client. This default
client, excluding the Web Services client GUI, was generated using WSDL-to-Java, an
Apache Axis utility. Similar tools for generating Web Services clients are available for
C++ and other languages.

To deploy the default client, copy the “TMSClient.jar” file into a newly created folder
named, say, TMSClient. This jar file is all that needs to be present for TMS Web Services
client.

3.1.4.4 Client Execution
From a MS-DOS window, change the working directory to be TMSClient. Your Java
CLASSPATH variable should include the current directory. Execute the command “java
–jar TMSClient.jar”. A window should open, as shown in Figure 3-9. Each one of the

22

three Web Services can be invoked by pushing the corresponding button at the bottom of
the window. The first two Web Services, to search for Schemas and to get a specified
Schema, each require a text string as an argument. That argument should be entered in
the box at the top of the window.

Figure 3-8: The TMS WSDL Returned From Server

3.2 Schema Definition and Maintenance Process
This section describes schema processes supported by schema definition tools. The TMS
is a prototype designed to assist in understanding schema definition and maintenance
processes and the requirements of tools providing automated support to such processes.
The TMS provides benefits to COI information engineers and to their managers
following these processes.

The TMS is designed to support configuring information management tools, such as
IMCS or NCES, in a COI. The ICED project is premised on the assumption that such
tools are configured by means of XSD files, and that this configuration activity is one
necessary task in setting up a COI. A COI information engineer is defined, in the context
of the ICED project, as a person who is tasked with configuring, or maintaining the
configuration of, information management tools.

23

Figure 3-9: The TMS Web Services Client

The TMS supports the COI information engineer, that is, a typical TMS user, by allowing
him to concentrate on the domain or application area of concern to the COI. The TMS
user is assumed to have:

• Domain knowledge (for example, of tactical military applications)
• Some exposure to introductory computer science.

The TMS user is expected to know that variables have types and that data types can be
defined in hierarchies, where fields in one data type are themselves of some defined type.
This knowledge is helpful in conceptually understanding what one is doing in interactions
with the TMS GUI. On the other hand, the TMS user does not necessarily need to know
ontological engineering, XML, or XSD. Advanced users who may know XML and XSD
will still find the TMS useful in that it allows them to quickly generate valid XSD files
and to visualize their schemas more easily than is possible in examining a raw XSD file.

The manager of a COI information engineer benefits from the TMS in that the TMS
allows him to select information engineers from a wider range of candidates. He can now
choose information engineers whose area of expertise is more in the COI application
areas, instead of in XML and XSD. The TMS allows him to more quickly have such

24

candidates applying their skills to COI issues, without first having gone through training
in XSD development. The TMS allows users to build up and share libraries of Elements
and Fragments. The contents of these libraries can be reused in different Models, and the
TMS GUI allows both information engineers and others to quickly and easily understand
the structure of domain data. The manager of information engineers benefits from these
capabilities in that the TMS allows the sharing of work products more easily among those
reporting to him and with other groups. Given the TMS Web Services, some of this
sharing can even be done in machine-to-machine information exchange.

The TMS supports processes for developing schemas. Figure 3-10, based on a figure in a
textbook on ontological engineering (Gomez-Perez et al 2004), illustrates schema
development processes and how they fit into a larger set of processes. The development
of a schema is intended to produce an XSD file, in the case of the TMS, for use in some
later process. The TMS Web Services supports feeding the output of schema
development processes into use processes. The TMS can support the development of a
schema in iterative processes, in which the schema becomes increasingly detailed in later
iterations. Figure 3-10 suggests four such iterations. During maintenance processes, the
TMS user can use the TMS to correct mistakes discovered in schemas, change schemas
to support new capabilities, or to adapt schemas to changes in the environment in which
schemas are used.

Figure 3-10: Schema Processes

As information management tools become more ubiquitous, the management of schema
development will become more important. Management conducts it owns processes.
These processes include scheduling and planning schema development processes,
controlling schema development processes in ensuring that they are preformed on

25

schedule and within budget, and assuring that schema development processes following
defined processes. Schema development processes also require various supporting
processes. One supporting process would assess whether a developed schema meets its
requirements. Schemas must be documented. Schemas, Models, Fragments, and Elements
created with the TMS might exist in different versions, and a configuration management
process would help in keeping track of different versions. To support reuse, Schemas,
Models, Fragments, and Elements might need to be aligned with standards and style
guides required before entry into reusable libraries.

The TMS supports implementing each iterative development process as either a top-down
or a bottom-up process (Figure 3-11). The TMS allows one to save Models and
Fragments with no children and properties. This capability is needed to support the top-
down development process shown. Likewise the TMS allows the user to save Elements
that are not children of any Fragments that have yet been defined and Fragments that are
not yet children of any defined Models. These are necessary capabilities for a bottom-up
development process. In either process, the TMS allows the user to reuse and modify
existing Models, Fragments, and Elements. In this way, the TMS supports an exploratory
style of development.

Figure 3-11: Top-Down and Bottom-Up Schema Development Processes

The TMS is a proof of concept showing that appropriate automated support can ease the
cognitive burden in configuring information management tools for a COI. The TMS does
not support a full implementation of XSD or a full description of ontologies. Some XSD
capabilities not available in the XSDs generated by the current version of the TMS may
be useful or required for COI information engineering. The experience of the TMS

26

developers suggests that if the TMS were extended to fully implement XSD standards
(e.g. W3C 2004), it would become increasingly difficult to encapsulate complex syntax
and semantic aspects of XML and XSD. For example, ITT, fairly late in this effort, added
a capability to associate regular expressions with properties defined for each Fragment or
Model. Regular expressions are merely strings in the TMS; the user is not assisted
appreciably in the understanding of how to construct a regular expression. One is taking a
risk if one concludes from this research that the full education requirements of a COI
information engineer does not require XML and XSD training, since full tool support is
not conclusively provided by the TMS to give the engineer all needed capabilities
without the engineer ever examining XML and XSD code.

3.3 Scenario and Demonstration
The ICED demonstration illustrates schema processes, demonstrates selected TMS
features, and provides a capability with which any TMS user can demonstrate the TMS to
others. The demonstration shows the top-down development of a Model, the generation
of a Schema, and the retrieval of that Schema by the TMS Web Services. The Model
development in the demonstration reuses an existing Fragment and illustrates the
development of new Fragments. The Model development and XSD generation illustrate
capabilities of the TMS GUI. The XSD retrieved by the TMS Web Services can be used
to configure information management tools, assumed to be available in the demonstration
scenario to the TMS user. This demonstration can be run, using the information in this
report, without ITT support.

3.3.1 Demonstration Scenario
The scenario defined for the demonstration provides a setting in which the TMS user
actions conducted during the demonstration are plausible. The scenario presents the
actions of a COI information engineer with domain knowledge of tactical military
operations that are planned to be conducted in the COI. The scenario illustrates that the
COI information engineer does not need knowledge of XML or XSD to use the TMS.

In the scenario, the COI is temporarily isolated from NCES and the DDMR. Perhaps the
internal components of the COI are being set up, while some issue with remote
communications is being investigated. The scenario postulates the COI information
engineer has a rich collection of information management tools, and these are configured
to transmit geographical information, but in non-Cursor On Target (COT) format. The
TMS is assumed to contain a Schema, decomposed for this geographical information
prior to the start of the demonstration. This Schema (Figure 3-12) has latitude and
longitude specified in terms of degrees, minutes, and seconds; the COT schema requires a
single real number for each dimension. The detail Fragment in this existing Schema can
be reused in the COT Schema. The COT Schema also requires the definition of various
Properties or XML attributes not in the existing Schema for geographical information.

In the demonstration scenario, the COT information engineer is tasked with creating a
COT Schema (Figure 3-13). The COI information engineer is assumed to have access to

27

a rich set of information management tools in the COT. The COT Schema created with
the TMS can be used to configure some of these tools. For example, the COT Schema
can be used to specify information objects to be transmitted between components within
the COI. Or the COT Schema, in combination with the existing Schema might be used to
configure a fuselet to convert from information objects described by the COT Schema to
information objects described by the pre-existing Schema.

Figure 3-12: Initial Model, Fragments, and Element In Demonstration

Figure 3-13: COI Is Configured In Scenario

28

3.3.2 Demonstration Deployment
The TMS demonstration data is deployed in the ICEDDemo.zip file. The demonstration
data is extracted into a folder DemoData, created in the extraction. The demonstration
data is organized into two folders:

• DemoData\DemoStart: The folders and files for configuring the TMS before the
demonstration begins.

• DemoData\DemoEnd: The folders and files for configuring the TMS to display
the full COT Model during the demonstration.

To configure TMS to display the demonstration data at the appropriate point in the
demonstration, delete the files and folder in Eclipse\plugins\iced and copy the files and
folders in either DemoStart or DemoEnd to Eclipse\plugins\iced. Further details about
when to configure the TMS with the demonstration data is provided in Section 3.3.3.

3.3.3 Demonstration Steps
Before beginning the demonstration, the TMS must be configured to contain the initial
data used in the demonstration. To begin the configuration, delete the files and folder in
the Eclipse\plugin\iced directory. Then copy the file tms.properties, and the folders,
including their contents, from DemoData\DemoStart to Eclipse\plugins\iced, to configure
the TMS as described in Section 3.1.3.2. Start up the TMS Web Services server, as
described in Section 3.1.4.2. This completes the demonstration configuration.

The ICED demonstration consists of 11 steps:

1. Browse initial TMS configuration
2. Create COT event Model
3. Reuse existing detail Fragment as event child
4. Create COT point Fragment
5. Append point Fragment to event children
6. Edit event to ensure children are unordered
7. Define version property for event Model
8. Define lat property for point Fragment
9. To skip over defining each Property, restore complete COT event Model and

browse properties
10. Generate XSD
11. Demonstrate Web Services Schema browsing

3.3.3.1 Browse Initial TMS Configuration
Display the COI TMS configuration, as described in Section 3.1.3.3. You will see that a
single Model, EarthLocation, is defined. Edit EarthLocation by right-clicking on its
name and selecting “Edit” from the popup menu that appears. You can point out that

29

EarthLocation has no properties, and its children are unordered. When you are done
examining the EarthLocation window, click on the “Cancel” or “OK” button in the lower
right. By clicking on the “plus” next to EarthLocation, you can show that it has two
children, EarthPoint and detail. Since these children names appear in the Fragment
window, these children are both Fragments.

Edit EarthPoint by right-clicking on its name in either or both the Model window and the
Fragment window. In the Model window editing, you can see that exactly one EarthPoint
Fragment must appear in the EarthLocation Model. You can see how the ranges of the
properties of this Fragment are specified, and how different types are appropriate for
different ranges.

Edit the detail Fragment. You can see that it has one property, wildcard, which cannot be
edited. You can also see that the detail Fragment has one child, wildcard.

At this point, you have examined the Model initializing the demonstration (Figure 3-14).
The user in the scenario would like to reuse the detail Fragment in the COT event Model,
needs properties not in the initial Model, and needs to specify the location on the earth in
a different format than in the EarthLocation Model. The remaining demonstration steps
create a Model in which these needs are met.

Figure 3-14: Browsing Fragments in the Earth Location Model

30

3.3.3.2 Create COT event Model
Click on the “Create New Model” button on the upper right of the COI TMS view. In the
window that appears enter “event” as the name and “Event Definition” as the description.
When done, click on the “OK” button on the lower right. The name of your newly-
created event Model should now be displayed in the Model window.

3.3.3.3 Reuse detail Fragment as event Child
Right-click on detail in the Model window, and select “Add Fragment to Model” from
the popup menu that appears. A window will appear in which the two Fragments, detail
and EarthPoint are listed. Click on detail in that window, and it will become highlighted.
Click “OK”.

A new window for the detail child then appears. Enter 0 for the “Minimum Occurrence”,
and accept the default value of unity for the “Maximum Occurrence” by clicking on the
“OK” button.

3.3.3.4 Create COT point Fragment
Click on the “Create New Fragment” button on the upper right of the COI TMS view. In
the window that appears enter “point” as the name and “Point” as the description. When
done, click on the “OK” button on the lower right. The name of your newly-created point
Fragment should now be displayed in the Fragment window.

3.3.3.5 Append point Fragment to event Children
The point Fragment can be made a child of the event Model in the same way that the
detail Fragment was, as described in Section 3.3.3.3. For variety, you can demonstrate
the drag and drop capability of the TMS GUI. Both the “Minimum Occurrence” and the
“Maximum Occurrence” of point should be the default value of unity.

3.3.3.6 Edit event To Ensure Children Are Unordered
In an instance of the COT event Schema, the children Fragments can appear in any order.
At most one instance of each child can appear. Displaying the TMS GUI help capabilities
is not a formal step in the demonstration. This step, however, might be a good
opportunity to bring up the help system, following the guidance in Section 3.1.3.3. What
it means for a Model’s children to be unordered is explained in the “Create New Model”
explanation under TMS help

To ensure the COT event Model’s children are unordered, edit the event Model by right-
clicking on its name in the Model window, and select “Edit” from the popup menu that
appears. Select “Unordered” in the radio button menu for the Model’s children in the
window that appears. Click the “OK” button when finished. Figure 3-15 shows a display
when browsing the TMS data at this point in the demonstration.

31

Figure 3-15: event Model has point and detail Fragments As Unordered Children

3.3.3.7 Define version Property For event Model
Once again, edit the event Model. Click on the button labeled “Would you like to enter
additional properties pertaining to this Model?”

Enter “version” for name. Choose the decimal type for the Data Type. Leave pattern and
minimum value blank. Enter a maximum value of 2, enter a description of “version”, and
specify that this property is required. When done, click “OK”.

3.3.3.8 Define lat Property For point Fragment
Edit the point Fragment from the Fragment window. Click on the button labeled “Would
you like to enter additional properties pertaining to this Fragment?”

Enter “lat” for name. Choose the decimal type for the Data Type. Leave pattern blank,
enter a minimum value of -90, enter a maximum value of 90, enter a description of
“Latitude based on WGS-84 ellipsoid…”, and specify that this property is required
(Figure 3-16). When done, click “OK”.

32

Figure 3-16: Defining a Property for point Fragment

3.3.3.9 Restore Complete COT event Model And Browse Properties
Exit Eclipse, and delete the files and folder in the Eclipse\plugin\iced directory. Then
copy the file tms.properties, and the folders, including their contents, from
DemoData\DemoEnd to Eclipse\plugins\iced, to configure the TMS as described in
Section 3.1.3.2.

Restart Eclipse and display the COI TMS view. You should browse the COT event
Model, in the same way you browsed the EarthLocation Model in the first step of the
demonstration (Section 3.3.3.1). Note that both the event Model and the point Fragment
have several more properties defined. (Figure 3-17 shows the properties for the point
Fragment.) This step of restoring the TMS database is merely a shortcut to defining all of
these properties.

3.3.3.10 Generate XSD
Right-click on the name of the event Model in the Model window, and select “Generate
and Save XSD” from the popup menu that appears. You can browse the XSD file created
by the TMS by clicking on “View XSD” on the upper right of the COI TMS view. The

33

TMS GUI allows a long XSD file to be easily browsed and displayed in a compact form
to the user.

Figure 3-17: Properties For point Fragment

3.3.3.11 Demonstrate Web Services Schema Browsing
Invoke the TMS Web Services client, as described in Section 3.1.4.4. You should, at
least, display the event XSD created from the TMS GUI (Figure 3-18). The TMS Web
Services provides a capability for other systems to automatically extract XSD files from
the TMS. As such, human readability of the XSD returned by the TMS Web Services was
not emphasized during TMS development.

34

Figure 3-18: XSD for COT Returned By TMS Web Services Client

35

4.0 Conclusions
Under the ICED project, ITT developed a proof-of-concept software tool, the Type
Management System (TMS), to assist in the definition of a COI vocabulary and the
construction and management of schemas. A goal of the project was to demonstrate the
possibility of a functional tool for COI information engineers that would not require
strong XML and XSD knowledge. While this goal can be attained if the tool functionality
is limited, ITT found that as capabilities were added to the tool, the user would become
increasingly likely to require specific XML, XSD, and computer science knowledge. The
XSD specification is such that abstracting all computer science complexities from the
user seems to be impossible. In addition to achieving certain research results, ITT
identified some directions for future research during the course of this development.

4.1 Achievements
The achievements of the ICED project are easily summarized:

• Produced a prototype TMS to support a COI information engineer in defining
XSDs for use in COI information management

• Defined an iterative and hierarchical schema development process supported by
the TMS

• Defined a scenario and produced a demonstration of the TMS operating under that
scenario

• Identified directions for future research for the development of the TMS and the
schema processes supported by the TMS

This research promises to benefit COI information engineers and their managers. After
the technology described in this report is matured and transitioned, managers will not
require engineers trained in XML and XSD. Information engineers can concentrate on
issues in their application areas and data domains, rather than XML and XSD syntax.
Managers and engineers can more easily visualize and understand their domain data.
Engineers can quickly create and modify descriptions of their domain data using easy to
understand schema modeling concepts. Finally, the TMS Web Services illustrates
capabilities for machine-to-machine access to schema modeling information, with no
requirement for human examination of XSDs.

4.2 Directions for Future Research
The TMS and its demonstration show that COI information engineers configuring
information management tools can benefit from automated software tool support. The
prototype support provided by the TMS can be improved with research in five areas:

• Expansion of TMS support to additional features of the XSD language
• Additional capabilities of the TMS GUI

36

• Additional capabilities of the TMS Web Services
• Additional capabilities of the TMS
• Expansion of TMS usefulness by global improvements, including in the processes

supported by the TMS and in the environment which it operates.

4.2.1 Expansion of the Subset of XSD Features Implemented in
the TMS
Currently, the TMS supports the generation of only a subset of the XSD language. A
research question is whether software tool support would still allow a COI information
engineer to concentrate on application issues, without worrying about XML and XSD
details, if more features of the XSD language were implemented in the TMS. The
implementation of the complete set of XSD data types in the TMS is one additional XSD
language capability that could be added. The TMS currently provides some simple type
constraints on properties for Fragments and Models; future research could add a
capability to specify simple type constraints for Elements. In any case, simple type
constraints could be expanded to include all options available for XDSs, including global
simple type constraints. The TMS does not currently support all XSD elements and
attributes, and additional research might explore expanding support here too.

4.2.2 Additional TMS GUI Capabilities
Additional capabilities can be added to the TMS GUI. Undo functionality would be a
powerful addition. One might add drag and drop capability to allow the user to order the
display of Elements, Fragments, and Models at all levels.

4.2.3 Additional TMS Web Services Capabilities
TMS Web Services currently allow to Web Services to search and list the names of XSD
files and to retrieve the contents of a named XSD file. Additional Web Services can
expand the capabilities of machine-to-machine interactions with the TMS. Web Services
could be added to create Elements, Fragments, and Models. One might also add Web
Services to edit existing Elements, Fragments, and Models. Furthermore, network
security can be added by certificate and client authentication, as in, for example, NCES
Security Services. Along with such network security should come capabilities
distinguishing what TMS data different clients have access to.

4.2.4 Additional TMS Capabilities
The TMS data storage capabilities were not emphasized during the ICED project. Future
research could add a number of capabilities here. For example, the TMS could be
modified to store data, such as Elements, Fragments, and Models, in a relational database.
Access to TMS data can be controlled with future ownership and permission
functionality. Being able to manage multiple versions of Elements, Fragments, Models,
and Schemas would be another capability.

37

Access to Schemas, Models, Fragments, and Elements created and maintained by the
TMS could be provided to other information management tools, outside of a Web
Services context. Future research could investigate the creation of a TMS Application
Program Interface (API) to provide capabilities for integrating the TMS with other
software tools and systems.

Capabilities to load TMS data from other applications imply a need for further
functionality. In particular, validity checks should be researched to ensure that TMS data
is stored and loaded in a consistent state. Furthermore, a capability to load XSDs not
generated from the TMS into the TMS could be useful, especially if Models, Fragments,
and Elements can automatically be generated from such loaded XSDs.

4.2.5 Expansion of Usefulness
The TMS currently supports the development of XSD but does not capture ontology
information, as coded, for example, in OWL. Future research could explore capabilities
to support ontological development and maintenance processes.

The TMS is intended to operate in an environment with rich information management
tools, but the ICED project did not investigate interactions with tools and services, either
existing or under development. Future research might investigate, for example, the use of
the TMS in autonomously registering XSDs with the DDMR and the benefits gained by
registering TMS services with the NCES Service Discovery Services.

38

5.0 References
Boehm, B. W. (1988). “A Spiral Model of Software Development and Maintenance”,

IEEE Computer, (May): 61-72.
Burnette, Ed (2005). Eclipse IDE: Pocket Guide, O’Reilly.
Gallardo, D., E. Burnette, and R. McGovern (2003). Eclipse in Action: A Guide for Java

Developers, Greenwich: Manning Publications.
Gomez-Perez, A., M. Fernandez-Lopez, and O. Corcho (2004). Ontological Engineering:

With Examples from the Areas of Knowledge Management, e-Commerce and the
Semantic Web, London: Springer-Verlag.

Harlow, F. N. (2005). A JBI Information Object Engineering Environment Utilizing
Metadata Fragments for Refining Searches on Semantically-Related Object Types
(Master,s Thesis) AFIT/GCE/ENG/05-03, Air Force Institute of Technology.

ISO/IEC (2004). International Standard: Information Technology – Metadata Registries,
Second Edition ISO/IEC 11179-1 (15 September)

Lacy, L. W. (2005). OWL: Representing Information Using the Web Ontology Language,
Trafford.

McGuinness, D. L. and F. van Harmelen (editors) (2004). OWL Web Ontology Language
Overview, W3C Recommendation, 10 February, http://www.w3.org/TR/owl-
features/

Quine, W. V. (1953). “On What There Is”, in From A Logical Point of View, Cambridge:
Harvard University Press.

W3C (2004). XML Schema Part 1: Structures Second Edition, W3C Recommendation 28
October, http://www.w3.org/TR/xmlschema-1/

39

Appendix A. Acronyms
AFRL/IF Air Force Research Laboratory, Information Directorate
API Application Programming Interface
COI Community Of Interest
COT Cursor On Target
DAG Directed Acyclic Graph
DDMR DoD Metadata Registry
DoD Department of Defense
DOM Document Object Model
GUI Graphical User Interface
ICED Infosphere Concept Exploration and Development
IDE Integrated Development Environment
IMCS Information Management Core Services
MSR Metadata Schema Repository
NCES Net-Centric Enterprise Services
OIM Operational Information Management
OWL Web Ontology Language
PI Principal Investigator
RI Reference Implementation
SAX Simple API for XML
SDK Software Development Kit
SOAP Simple Object Access Protocol
SOW Statement of Work
SWT Standard Widget Toolkit
TCP/IP Transmission Control Protocol/Internet Protocol
TIM Technical Interchange Meeting
TMS Type Management System
URL Uniform Resource Locator
WS Web Services
WSDL Web Services Definition Language
XML eXtensible Markup Language
XMLDB XML Database
XSD XML Schema Definition

40

Appendix B: Analysis Of TMS Extensions To Support
OWL
How can the TMS be extended to support the capture of ontology information and the
generation of OWL schemas? There is not a one-to-one relationship between OWL
schema constructs and XSD constructs. Hence, extending the TMS tool to generate OWL
schemas is not simple. Although TMS is extensible, the challenge will be to add the
ability to capture desired ontology information without making the tool unduly
complicated. Adding ontological functionality to the TMS is not a trivial exercise, but
nothing in the TMS design precludes addition.

Jena, an open-source Java framework for building applications under the semantic web,
might be useful in extending the TMS to support OWL. Jena can be used with Eclipse.
Perhaps a “Generate OWL” menu option could be added to the TMS, next to the
currently existing “Generate XSD” menu option. The “Generate OWL” menu option
would invoke the Jena models.

An example illustrates some of these points. Figure B-1 presents a sample of Models,
Fragments, and Elements that can be defined in the TMS. Figure B-2 presents a possible
ontological characterization of this example. That is, Fragments and Elements are
explicitly shown as classes in the ontology, along with their properties and relations
among instances of each. The possibility of this sort of representation justifies the claim
that the TMS design does not preclude adding OWL functionality. Figure B-2 constitutes
an outline of Jena code for creating a model from which an OWL schema can be
generated. ITT also examined Protégé, an open-source ontology editor, for ideas on
generating OWL schemas. It too can be used with Eclipse. It was installed and used to
define simple Elements and Fragments from which an OWL schema was generated.

An extension of the TMS to support OWL would also need to reconsider how Fragments
and Elements are stored. These are currently stored as XML in text files. The structure of
this XML would have to be extended to provide for storage of additional ontological
information.

41

Figure B-1: An Example Model For The TMS

Figure B-2: A TMS Model Interpreted As An Ontology

42

OntModel model = ModelFactory.createOntologyModel();
OntClass element = model.createClass();
OntClass fragment = model.createClass();
DatatypeProperty name = model.createDatatypeProperty(

arguments);
DatatypeProperty type = model.createDatatypeProperty(

arguments);
DatatypeProperty desc = model.createDatatypeProperty(

arguments);
Individual lat = model.createIndividual(element);
Individual long = model.createIndividual(element);
Individual city = model.createIndividual(element);
Individual state = model.createIndividual(element);
ObjectProperty hasElements =

model.createObjectProperty(arguments);
ObjectProperty hasFragments =

model.createObjectProperty(arguments);
 // hasFragments is not used in this example
Individual address = model.createIndividual(fragment

);
Individual geoLocation = model.createIndividual(

fragment);
// Ontology classes element and fragment are part
// of model.
// Properties name, type, and desc, and their values
// should be added to each individual element
// (lat, long, city, state) created above.
// Property hasElements and its values (city, state)
// should be added to address
// Property hasElements and its values (lat, long)
// should be added to geoLocation

Figure B-3: Jena 2.4 Code Framework Creating An Example OWL Model

43

Appendix C: ICED Software Catalog

Component File Description

iced_1.0.0_src.zip Source and development files TMS GUI and Storage
iced_1.0.0.zip Jar file and TMS data files to

deploy as Eclipse plugin
TMS-WS.zip Web Services to deploy under

Tomcat
Type Management

System.zip
Source and development files for

TMS Web Services server and
client

TMS Web Services

TMSClient.jar Default Web Services client to
deploy

Demonstration ICEDDemo.zip TMS data for demonstration
ICED Final Report ICEDFinalReprt.pdf This document

